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Abstract 

It is shown that realisations of any Lie algebra by means of bilinear polynomials of 
quasifield operators exist. These realisations are used to find some class of representations 
of the algebra. 

1. Introduction 

In the present paper we show that any Lie algebra d can be realised in 
terms of polynomials of operators which satisfy partially Bose and partially 
Fermi commutation relations. 

The realisations of  some Lie algebras by means of Bose operators as, b~, 
i, j =  1, . . . ,  n, [ai,aj] = 0 ,  [b~,bj] =0 ,  [ai,bj] = ~j  was known long ago 
and during the last years has been often used for physical applications. 
A common method for embedding of an arbitrary Lie algebra ~r in the 
set of bilinear combinations b~aj of the Bose operators has been worked 
out by Palev (1968). Doebner & Palev (1970) have shown that the elements 
of  ~r can be expressed as rational functions of a~ and b j, i, j = 1 . . . .  , n. 
Another generalisation of the embedding method was recently given by 
Kademova (1969). There, it has been shown that some of the realisations 
obtained by Doebner & Palev (1970)--those which are bilinear with 
respect to a~ and bj are valid for a much larger class of operators--the 
so-called para-Bose and para-Fermi operators. 

The aim of our paper is to combine the results from Palev (1968) and 
Kademova (1970) with some old results obtained by Green (1953). In 
this way we enlarge the space where the representations of the algebra are 
realised, and thus a larger class of representations can be obtained. An 
advantage of  the present approach is the fact that the basis of the representa- 
tion space is known. Therefore it is possible to find all the representations 
in a matrix form and also to prove the isomorphism between the Lie 
algebra d and its realisation with quasifield operators. 

The algebra ql(n,p, E) of the quasifield operators is introduced in Section 2. 
In Section 3 we prove that any Lie algebra ~r can be embedded in qZ(n,p, E). 
Some class of  the representations is discussed in Section 4. 
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2. Definition of  the Carring Algebra qY(n,p, E) 

Let F be an arbi t rary  field and a~ ~ and  bfl ,  i, j = 1 . . . . .  n, ~, fl = 1 . . . . .  p ,  
be given entities. By T(n,p) we denote the algebra of  the polynomials  o f  
a~ ~ and  bf l  over  the field F. Let  ~--, be the ideal in T(n,p) generated f rom 
the elements:  

a~ ~ bf l  + ( -1 )  a:~ Eb+~ a~ ~ -- IS~j a:~ 

a~'afl + (--1) ~ ~afl a~ ~ (2.1) 

b~ ~ bf l  + ( -1 )  ~'~ Ebj~ a~ ~ 

where ~, fl = 1 . . . . .  p,  i, j = 1 . . . . .  n, E = ~1 (when e is lower-case index, 
E = ~),  I is the unity of  T(n,p). 

In what  follows we shall compare  always the elements in T(n,p) modulo  
~ - , ,  i.e. we shall consider the factor  algebra 

qY(n,p, ~) = T(n,p)/Y~ (2.2) 

Fo r  convenience of  the terminology we shall refer to ~(n,p, ~) as quasi- 
enveloping algebra. 

F r o m  (2.1) it follows that  in ql(n,p,a) the following relations hold:  

ra .  = b . ~ l  = IBm.j, ra ~ a ~1 " - i , j ~-, = [bl ~, bj ]_, - 0 for /3  
(2.3) 

[a~ =, bf l] ,  = [a~ ~', a f t ] ,  = [b~ ~', bf l ] ,  = 0 for  ~ ~ /3  

Clearly, the set o f  a~ ~, bj ~, i, j = 1 . . . . .  n, for  positive E satisfy the com- 
muta t ion  relations for  Bose operators ,  whereas if ~ # /3  all the opera tors  
an t icommute .  Therefore  we call them quasi-Bose operators .  Analogously  
for  negative ~ the entities a~ ~ and bj ~ have the propert ies  of  Fermi  operators .  
I f  ~ ~ /3  they commute .  We can call them quasi-Fermi operators .  Fo r  
convenience o f  the references by quasifield opera tors  we unders tand either 
quasi-Bose or quasi -Fermi  operators .  With  respect  to the algebra qY(n,p, E) 
the quasifield opera tors  will be referred to as its generators. '~ 

I t  follows f rom the structure relations (2.3) tha t  any element a ~ q~(n,p, E) 
can be expressed as a linear combina t ion  of  the monomia l s  

r i=1 f i l l  j = l  

where m~ ~', nfl are positive integers. 

t The operators a~', bfl have been introduced by Green (1953). Certain combinations 
of them, namely 

a,= ~ ai" and b j =  ~ bj ~ 
~t=l ~t=l 

are called Green Ansatz and satisfy the relations for para-Bose and para-Fermi operators. 
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The set ~ ' ,  of  all elements of the form (2.4) is linearly independent and 
generates ql(n,p, r Therefore, ~ forms a basis in the space of the algebra 
q/(n,p, e). 

3. Embedding of  an Arbitrary Lie Algebra in qA(n,p, r 

In the present section we prove that any Lie algebra d is contained in a 
properly chosen quasi-enveloping algebra. The exact statement is the 
following: 

Theorem 1 

For  an arbitrary finite Lie algebra d there exists a positive integer n 
such that the algebra dg(n,p, ~) contains a Lie-isomorphic image of d 
for any p and e.t 

The proof  of  this Theorem can be derived from the properties of the 
Green Ansatz and the Proposition 1 given by Kademova (1970). In order 
not to introduce new notations, and to make the exposition selfconsistent, 
we give a straightforward proof. 

Proof: Since any Lie algebra d has at least one exact finite representation 
(Ado-Iwasawa theorem, Jacobson, 1967) it is enough to prove the Theorem 
for an arbitrary algebra of finite matrices. 

Consider d to be an algebra ofn  | n matrices. To every element M ~ d 
we put in correspondence an element MO ~ qA(n,p, ~) which we define to 
be~ 

In order to prove the Theorem we have to show that 0 is one-to-one 
mapping, which preserves the commutation relations, i.e. [MO, NO] = 
[M, N] 0. 

Consider the commutator [MO, NO] - F e 91(n,p, E) 

(3.2) 
P 

= �88 N/m ~ rrb.~ a.~l [bz ~, am~]~] LL  t ' J JE~ 
~ = l  

The last equality in (3.2) follows from the relations (2.3). The fact that any 
bilinear combination of commuting or anticommuting objects commute 
has also been used. Using now the identity 

[ab, c]_ = a[b, c]_, + E[a, c]_,b (3.3) 

t It is to be understood that the Lie-commutator in the associative algebra ql(n,p, e) 
is introduced in a natural way, i.e. if a, b E qA(n,p, ~) then [a,b] = ab - ba. 

We adopt the summation convention over repeated low indices. 
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P 

F =  �88 sNt , ,  ~.. (23s,[b,~',am~'], - 23,,,[b,~',aS'],) 
o~=1 

(3.4) 

We shall complete the proof  by showing that 0 is one-to-one. For  this we 
express MO as a linear combination of  the basis elements (2.4). We have: 

P 
M O = - p T ~  M . I  + ~ Mtsb~ '  aj ~' (3.5) 

r162 

Clearly, if MO = NO then M~s = N~s and 0 is one-to-one mapping of  ~r 
into ~r 4). We want to point out that everywhere in the p roo fp  
and E were arbitrary. �9 

The previous Theorem shows that any finite Lie algebra d can be 
embedded in a proper chosen algebra ql(n,p,  E). More precisely we can 
say that d has a realisation as bilinear combinations ofquasifield operators. 
A natural question arises as to whether this realisation is unique or it is poss- 
ible to map the algebra d in different ways in qJ(n,p, E). In particular it 
is interesting to see whether ~r can be realised in terms of higher-order 
polynomials, and to find all such realisations. In the present paper we shall 
answer partially this question. We shall show that the embedding is not 
unique and that there exist realisations which are not bilinear with respect 
to b~ ~, aft. The problem of higher-order realisations is closely related to the 
concept of  the canonical isomorphisms of qJ(n,p, ~) (Doebner & Palev, 
1970). A canonical isomorphism o fq l (n ,p ,  4) is a mapping ? of the quasifield 
operators ai ~', b f l ,  i , j  = 1 . . . . .  n, ~, fl = 1 . . . .  , p,  into ql(n,p,  4) which preserves 
the structure relations (2.3). Suppose that there exists a canonical iso- 
morphism ~ such that the images of the quasifield operators a~, bs/3 are 
polynomials in al ' ,  bfl. Since in the proof  of Theorem 1 only the structure 
relations were used, it follows that the substitution a~ ~ -+ a~= and bfl ~ bfl 
in the realisation (3.1) of  ~r gives a new realisation. If  ~ and ~/3 are 
higher-order polynomials of the quasifield operators, so is the new realisa- 
tion of the algebra. 

We now proceed to construct one possible kind of canonical isomorphism. 
Since we intend to give only an example, we shall restrict our considerations 
to the case of  the algebra ql  ( n,p,  +). Let a~ ~', b f l ,  i , j  = 1 . . . . .  n, ~, fl = 1 . . . . .  p ,  
be the generators of  ql(n,p,  +). Determine the mapping g of  the generators 
into qJ(n,p, +) in the following way: 

a, ~' ~ = al ~ + 31k 3~,(bk~') 2"-1 (3.6) 

bfl ~ = bfl 

where rn, k and ~ are fixed positive integers such that 1 ~< k ~< n, 1 ~< ~ ~< p, 
i , j =  l . . . .  , n ,  o~,fl= l . . . . .  p .  
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A simple verification shows that the operators a~ ~ E and bj~ E satisfy the 
structure relations (2.3) and hence E is a canonical isomorphism of 
ql(n,p, +). Moreover, the operators a~ ~ E and bjO g are polynomials of order 
2 m -  I of the generators. Therefore, the substitution ai~-+ a~E and 
bJ  ~ --> bJ3g in (3.1) immediately leads to a new realisation of the algebra 
d through polynomials of order 2m of the quasifield Bose operators. 
Thus we have established the following: 

Proposition 1 

Any finite Lie algebra over an arbitrary field can be realised in terms of 
polynomials of an arbitrary even order of the quasifield operators. 

The se t / "  of all canonical isomorphisms of the type (3.6) is not closed 
with respect to multiplication. It can be easily checked, however, that the 
product of any two elements El ~ / '  and E2 e / "  is also a canonical iso- 
morphism. This provides a new possibility for constructing a larger class 
of canonical isomorphisms. Indeed, denote by _P the set of all monomials 

p 

k = l  

of arbitrary elements ?k e / ' .  Then any element from F is a canonical 
isomorphism a n d / "  is a proper subset of_P. 

Concluding the discussion about  higher-order realisations we would 
like to remark that in the quasi-Fermi case there is no need in looking 
for polynomials of order higher than 2np, since these are the highest 
polynomials in ~i(n,p,-). In this case it is not possible to construct canonical 
isomorphisms in a way similar to that considered above [see (3.6)], since 
(bt~)" = 0 for n > 1. 

However, such realisations exist. We give an example of this kind for 
the algebra 0(2, 2).'~ 

Let us specify the generators of the algebra in the following matrix form: 

L 1 (i ~ ~ oO~ 1 o~ i) 

( oo oO oO~ L 4 = 

( 00 
L2 = 0 0 0 0 

0 0 L3 =  0 0 - 

0 -1  0 0 

(3.7) 

(!OOo 1 i ) ( i  ~176 o i) L5 = 0 0 L6 = 1 0 

o o - o o 

1" A general approach for constructing second-order realisations of an arbitrary Lie 
algebra by means of para-Fermi or para-Bose creation and annihilation operators is 
given in Kademova & Palev (1970). 
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Consider now the following second-order polynomials of  two Fermi 
operators: 

�9 .LPl = [bl,ai]-  ~ 2  = [bl, az]_ ~ 3  = [bz, al]- (3.8) 
' ~ 4  = [b2, a2]_ ~('5 = [bl, b2]_ ,~~ 6 = [al, a2]_ 

One can easily check that with respect to the mapping L~ -+ 5r the poly- 
nomials (3.8) form a realisation of 0(2, 2). 

4. Representations o f  an Arbitrary Lie Algebra 

In this section we show how the mapping of an arbitrary Lie algebra 
d i n  ql(n,p, ~) can be used in order to find some class of  representations 
o f d .  

Let ~ be the realisation of d in q/(n,p, E). We consider the algebra 
q/(n,p, e) as a linear space and with each element a ~ ~ we associate a 
linear transformation a* of q/(n,p, 4) into itself, which we define in the 
following way: 

a* x = [a, x] for V x  ~ ql(n,p, E) (4.1) 

Proposition 2 

The mapping ~: a - +  a* of z~ onto ~ 7={a* l a  ~ ~ }  preserves the 
commutat ion relations. I f  ~7 does not contain the unity I of  ql(n,p, ~) then 

is one-to-one mapping. In this case d is an exact representation. 

Proof:  Let a~ and az be arbitrary elements from z~ and x an arbitrary 
element f rom ql(n,p, 4). 

[al*, a2*] x = [al, [a2, x]] = al a2 x - a2 al x - xal a2 + xaz al 

= [al, a2]* x 

To complete the proof  let us remark that the kernel of  ql(n,p, ~) is generated 
f rom the unity of  this algebra. 

Suppose now that a~*= a2*. Then for any x ~ ql(n,p,~), a l * x  = az*x,  
and therefore [al - az,X ] = 0 .  Hence a~ - az = ~1, where ~ is an element 
of  the ground field F. I f  d does not contain the unity, then ~1 E ~7 only 
for ~ = 0 ~ F, and hence a~ = a2. �9 

The representations ~7 of  d we have constructed above is, however, 
not very useful if it is necessary for it to be written in a matrix form. The 
space ql(n,p, 4) is noncommutative, and to express the element a* x through 
the basis one has, therefore, to use many times the structure relations (2.3). 

I t  is more convenient to realise the representations of  ~r in the subspace 
�9 V ofY/(n,p, 4) consisting of all polynomials of  the operators b~ ~, i = 1 . . . . .  n. 

= 1 . . . . .  p. This is not possible always, since for some realisations d 
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of ~r the space_V is not ~-space, i.e. it is not closed under the mapping 
x ~ a* x, a ~ ~r To prove that there exist realisations of ~r in ql(n,p, E) 
for which V can carry representations, we are going to establish first the 
following: 

Proposition 3 

The space Vcql(n,p,~) is closed under the mapping x -+  [[bl~,afl]~,x] 
for any possible values of i, j and ~. 

Proof: Since the mapping under consideration is a linear one, and the 
space V is spanned on all vectors, 

(ml 1 . . . . .  m, p) = (bl')~' (b2') ~d ' ' "  = f i  f i  (bkr m~o (4.2) 
/3=J k=l 

it is enough to show that 

[[b~ ~, a~],,  (ml l . . . . .  m.P)] ~ Z 

Calculating directly we get 

g - - I  n p 
aa~  1 [[b, ~, J ],,(m, . . . .  m.")]= ]-[ ~ (bkg)'k~j I]~ f i  (b,~') ~'e 

f l=l  k~l  7=r t ~ l  

where 

~ , 5  = ~rrb.-,, a~.~l~,, f i  (b~)~," ] 

Using the structure relations (2.3), after some calculations we obtain finally 
for ~.~. ~J 

I tel m|~ j - I  i - I  
ms~e' i +1 r=ll~ (br~)"(bj~) mJ'-I ~=j+l 1~ (bq~)mqa(b'~)m'~+l • 

• I~ (bs~) "~ for i > j  
s= /+ l  

i j - -  mj ~' f i  (br~') "," for i = j  
r= l  

j~l  ml~ i -1  j - I  
mS'O='+' I~ (br~)m'~(bi~) m''+l 1-~ (bq~)m~(bj~)m~ ~-1 • 

r = l  q=f+l  

• f i  (b~) ~," for i < j  
s=j t - I  
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Then we can write 

[[b, ~', af']~, (ml  l . . . . .  m,P)] = m r '  x I l-I 
Y ml~ 

o=~+1 • ( m l i , . . . , m j  ~ -  1 . . . . .  mi~ + 1 . . . . .  m ,  p) 

• (ml 1 . . . . .  m i ~ , . . . ,  m n  p) for i = j  J-I 
inlet 

e 1=~+1 • ( m l  1 . . . .  , m i  ~ + 1 . . . .  , m j  ~ - 1 , . . . ,  m n  v) 

for i > j  

(4.3) 

for i < j l l  

It follows from Theorem 1 that any Lie algebra ~r can be isomor- 
phically mapped in a proper ~ ( n , p ,  ~) in such a way that the elements 
of  the image algebra ~r are linear combinations of some [ b ~ , a f ' ] ,  
~ ( n , p ,  ~). This result, together with Proposition 3, leads immediately to 
the following: 

Theorem 2 

Let ~7 be a realisation of an arbitrary Lie algebra d in terms of  linear 
combinations of the elements [bi~',as~], ~ ~ ( n , p ,  E) as defined in Theorem 
1, and let V be the space spanned on all polynomials of bi ~ for all o~ and i. 
To every a E ~ we put in correspondence a linear mapping a* of V in 
~ ( n , p ,  ~) defined as 

a* x = [a, x] Vx E V (4.4) 

T__hen, V is closed under the mapping a* for all a E d and the set 
off = {a* [a ~ d }  is a representation of d in V. 

The space Vis not the sole subspace of~(n ,p ,  e) which can carry represen- 
tations of d .  It is possible to find as well many other subspaces which 
are closed under the same realisation d of  the algebra d .  For  instance, 
the substitution bi ~ -+ a~ ~' in V for some or all values of ~ and i leads to a 
new subspace V' which also is A-subspace. The representations in V and 
V' are generally different. 

To conclude, we want to point out that the results obtained by Palev 
(i968) appear to be a particular case of the present consideration when 
p = 1, ~ = +. We should add, that in a similar way the analytical continuation 
of the indices labelling the basis vectors (m~, . . . ,m,  p) of  V leads to new 
representations in the quasi-Bose case. Our generalisation is, however, 
different from that developed by Doebner & Palev (1970), where rational 
functions of  the creation and annihilation Bose operators are introduced. 

Since certain combinations of the quasifield operators satisfy Green 
structure relations, the present paper extends also the results obtained by 
Kademova (1970). There exists a natural isomorphism between the 
realisation in terms of parafield operators and quasifield operators. In our 
case, however, the representation space is made larger, and hence we obtain 
more representations. 
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The representations we have defined in Theorem 2 are ongoing general- 
isations o f  the so-called ladder representations often used in physics. 
For  instance, the ladder representations of  q/(n) are realised in V of  e = + 
and p = 1. I f  V' is a space obtained f rom V through the substitution 
b~ ~ at, i = 1,.. . ,  q, then in V' the ladder representations o f  u(n - q,q) 
are realised. 

Since up to now not  all the representations of  qZ(p,q) are known, it is an 
interesting problem to investigate the representations for arbitrary p and 
e, and to see whether they contain some new classes of  representations. 
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